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The ordering kinetics of a coupledXY-Ising model on a two-dimensional square lattice quenched from a
disordered state to a low-temperature ordered phase is investigated via Monte Carlo dynamical simulations.
The decay process of the two types of topological defects~point vortices and line defects of Ising domain
walls! and the interaction between them controls the long-time dynamics of the ordering. In particular, the
decoupling ofXY degrees of freedom across Ising domain walls leads to the pinning of vortices near the walls,
which considerably slows down the growth ofXY order: it shows a power-law growth in time with the
exponentfXY.0.38. This vortex pinning also appears to give rise to a stretched exponential relaxation in the
XY autocorrelation function. The dynamic scaling for bothXY and Ising order parameters in the presence of
multiple length scales is discussed.@S1063-651X~96!09609-2#

PACS number~s!: 64.60.Cn, 64.60.Ht, 64.60.My, 82.20.Mj

I. INTRODUCTION

Understanding the ordering kinetics of statistical systems
subjected to a rapid thermal quench from a disordered phase
to an ordered phase has been one of the central issues in
non-equilibrium statistical mechanics@1,2#. A recent nonper-
turbative approach to this problem@3–5# seems to offer sig-
nificant theoretical progress in this area. Being extended to
systems possessing continuous degeneracy of ground states,
the theory@6–8# has stimulated intensive theoretical and ex-
perimental investigations on the kinetics of systems having a
variety of stable topological defects such as vortices, strings,
and monopoles.

Most research so far, however, have been restricted to
systems with ground states possessing asingle type of de-
generacy, either discrete or continuous. Recently, Lee, Lee,
and Kim @9# have investigated numerically the kinetics of
ordering in a system with both discrete and continuous sym-
metries. This work indicated that the ordering kinetics of
systems havingtwo types of ground-state degeneracies si-
multaneously can be, though complicated, very rich due to
the simultaneous presence of two different stable topological
defects and the interaction between them. Specifically, the
model they considered was the two-dimensional fully frus-
trated XY model ~FFXYM! @10# on a square lattice. The
ground-state manifold of the model possesses discrete Ising-
like chiral symmetry in addition to usual global continuous
rotation symmetry in spin space. Due to this unusual sym-
metry structure of the ground-state manifold, excitations of
the model can have two types of stable topological defects:
line defects of chiral domain walls and point defects, which
are vortices having a fractional value of the original vortex
charges and reside always at the corners of the line defects
@11,12#. Simulation showed that the interaction between two
kinds of defects leads to an unusual faceted domain morphol-
ogy at low temperatures, which becomes rough at some finite
temperature.

A coupledXY-Ising model@13#, which explicitly has both
XY and Ising degrees of freedom on each site, is another

model system having the same O(2)3Z2 ground-state de-
generacies as the FFXYM. Here the O~2! continuous sym-
metry corresponds to the invariance of Hamiltonian under
global rotation of phases ofXY spins, whereas theZ2 dis-
crete symmetry corresponds to the doubly degenerate Ising
order parameter. This model, with an appropriate choice of
the parameters, has been claimed to belong to the same uni-
versality class as the FFXYM with respect to the equilibrium
critical properties. In the present work, we carry out Monte
Carlo simulations on the ordering kinetics of a coupled
XY-Ising model with the aim of highlighting the common
and contrasting features of these two closely related models
possessing the same ground-state degeneracies.

We find that the Monte Carlo ordering kinetics of the
coupledXY-Ising model in two dimensions exhibits interest-
ing features due to the mutual pinning between point vortices
and Ising domain walls. In the limit of a zero-temperature
quench, the system freezes into metastable configurations,
just as in the case of pure hard spinXYmodel@14,15# or the
FFXYM in two-dimensional square lattices@9#. For
quenches to finite temperatures, the equal-time correlation
functions of an Ising order parameter satisfy a dynamic scal-
ing, while those of anXY order parameter follow a critical
dynamic scaling, as can be expected from the fact that the
XY order parameter, at equilibrium, exhibits a so-called
Kosterlitz-Thouless~KT! phase@16# with a power-law cor-
relation for T,TKT , whereTKT is the KT transition tem-
perature. The appropriate length scales~corresponding to the
average size of Ising domainLI and theXY-ordered region
LXY) exhibits power-law growth in time, i.e.,LI;tf I and
LXY;tfXY with temperature-dependent growth exponents
f I andfXY : they show a quick increase at low temperature
and saturate to the values nearf I.0.5 andfXY.0.38, re-
spectively, for most of the temperature range below the tran-
sition temperatureTI;TXY.1.38. The simulation result that
the growth exponentfXY for theXY quasiordering is signifi-
cantly smaller than that of the pureXY model @17–19,15#
can be attributed to the effect of pinning the vortices near
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Ising domain walls, which hinders the motion of point vor-
tices and also the annihilation of vortex-antivortex pairs.

In terms of the domain growth morphology, we find that,
at low temperatures, Ising domain walls show mostly faceted
shapes~straight domain walls!, while at higher temperature
they become rough. This fact is in contrast to the case of
pure Ising dynamics where the infinitesimal thermal fluctua-
tion leads to rough domain walls. In the case of the FFXYM,
quite convincing numerical evidence@9# could be given to
the finite-temperature roughening of the chiral domain walls,
which was attributed to the interplay between the long-range
interaction of corner point defects~with fractional charges!
and the thermal fluctuation. In the case of a coupled
XY-Ising model, the status of numerical evidence as to the
finite-temperature roughening is not conclusive enough.
There are no inherent charges associated with corners of
Ising domain walls in the coupledXY-Ising model. But the
decoupling ofXY spins across Ising domain walls~see be-
low! makes the vortices ofXY spins pinned near Ising do-
main walls or corners, which may play roles similar to the
corner charges in the FFXYM.

We find a feature for the autocorrelation function of the
XY spin order parameter that exhibits an unusual stretched
exponential behavior ofAXY(t);exp(2ctb), where the value
of b ranges from 0.13 to 0.17. This peculiar behavior is
reminiscent of the behavior of the spin autocorrelation in the
one-dimensionalXY model, but with a different value of the
exponentb (b51/2 in the one-dimensionalXYmodel! @20#.
A similar stretched exponential behavior for theXY autocor-
relation function is found in a time dependent Ginzburg-
Landau model with bothXY and Ising-type ground-state de-
generacies where the valueb is given approximately by
b.0.16 @21#.

This paper is organized as follows. Section II describes
the model, the simulation method, and the quantities of in-
terest. The simulation results along with a discussion are
presented in Sec. III. Section IV summarizes the results.

II. MODEL AND SIMULATION METHOD

A general form of the Hamiltonian for a coupled
XY-Ising model@13# can be written as

H52J(̂
i j &

@~11asisj !cos~u i2u j !1gsisj #, ~1!

wheresi561 andu i are the Ising spin and the phase angle
of the XY spin at sitei respectively, and the bracket^ i j &
indicates that the sum is taken over nearest-neighbor pairs. In
equilibrium, the model is known to have a rich variety of
critical behaviors. For example, Granatoet al. @13# predict
for a51 ~isotropic case! a single continuous transition to a
disordered phase~for g<g* , whereg*'0.3) where both
XY and Ising orders are destroyed, a separateXY and Ising
transition ~for g.g* ), and a first-order transition~for
g!g* ).

In the present work, however, we restrict ourselves to the
simplest case of the general Hamiltonian~1!, namely,a51
andg50:

H52J(̂
i j &

@~11sisj !cos~u i2u j !#. ~2!

Granatoet al. claim that this simpler model hassingle XY
and Ising transition at the temperatureTc.1.38 @22# ~we set
J51 and the Boltzmann constantkB51). In equilibrium,
this model can have two topological excitations at finite tem-
peratures besides the smooth spin wave excitation of the
XY spins. One is vortices of theXY spins that interact loga-
rithmically in the large distances among themselves. The
other is the domain wall excitation that comes from the two
degenerate Ising spin domains. The form of the Hamiltonian
~2! indicates that theXY spins located across Ising domain
walls ~at sitesi and j ) become decoupled since 11sisj50.

We are interested in understanding the kinetics of the or-
dering process in the system governed by the Hamiltonian
~2! followed by a thermal quench from a disordered phase to
an ordered phase. The ordering kinetics is probed via Monte
Carlo simulations where the standard Metropolis update is
carried out from disordered random initial configurations.
One of the following update procedures are randomly se-

FIG. 1. Relaxation of the excess energy per siteDE for a zero-
temperature quench.

FIG. 2. Scaling collapse of the equal-time correlation functions
for the Ising spin atT51.0 with LI(t);tf I, wheref I.0.505.
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lected: ~i! rotation of theXY phase angle by a random
amount, leaving the Ising spin unflipped, and~ii ! rotation of
theXY phase angle by a random amountand Ising spin flip.

Simulations were carried out on a square lattice of linear
sizeL5200. The results presented are averages over 40–60
different random initial configurations. In order to carry out a
quantitative analysis on the kinetics, we measure the equal-
time correlation functions and autocorrelation functions for
both XY and Ising order parameters. In addition to these
quantities, we also measured the total length of Ising domain
walls and the total number of the corners of the Ising domain
walls to examine a possible morphological change.

III. SIMULATION RESULTS AND DISCUSSION

One of the most important characteristics in the ordering
dynamics of a coupledXY-Ising model is the mutual pinning
of vortices and Ising domain walls, as can be seen from the
snapshots of the morphology of the system~Fig. 8!. Now the
XY ordering proceeds via coarsening and decay of the vor-
tices and Ising ordering through the decay of the domain
walls. Since the morphology shows mutual pinning between
the two kinds of topological defects, we expect that a non-
trivial growth law would result for the ordering for each
order parameter from the pinning effect, which indeed is
seen to be the case from the simulation results.

For the case of zero-temperature quench, we find that the
system is driven into a metastable state and the ordering does
not proceed any further. This can be best seen in the relax-
ation of the excess energy per siteDE[E(t)2E0,
E0524 being the ground-state energy per site. As Fig. 1
shows, it saturates into some nonzero value, indicating that
the system falls into a metastable configuration. Similar
freezing behavior has also been observed in the FFXYM on
a square lattice@9#. It is observed that this freezing is re-
moved by a thermal fluctuation.

For a finite-temperature quench, in order to check the dy-
namic scaling and find the growth rate of the ordering pro-
cesses, we first tried to collapse the Ising order parameter

correlation functionsCI(r ,t) with a length scaleLI(t), which
is defined asCI„r5LI(t),t…51/2 for a given timet. This
gives a good data collapse for a given quenching tempera-
ture, as demonstrated in Fig. 2. This means that the equal-
time Ising correlation function satisfies a simple dynamic
scaling of the formCI(rW,t)5 f I„r /LI(t)…. As one can expect,
the Ising length scaleLI(t) shows a power-law growth in
time of the formLI(t);tf I, but the growth exponentf I
shows a temperature dependence, as seen in Fig. 3: it rapidly
grows at low temperatures and saturates to the usual Ising
exponentf I51/2 at high temperatures.

Since theXY spin ordering is quasi-long-ranged, one ex-
pects a critical dynamic scaling for theXY spin correlation
functions of the formCXY(rW,t)5r2h f XY„r /LXY(t)…, where
h(T) is the critical exponent for the equilibrium correlation
at temperatureT. Since an analytic expression is not avail-
able forh, assuming a power-law growth of the length scale
LXY(t);tfXY, we adjust two parametersh andfXY to get
the best scaling collapse. Figure 4 shows such a scaling col-
lapse forCXY(r ,t) atT51.0 and the temperature dependence
of the exponenth(T) obtained from scaling collapse is
shown in the inset of Fig. 3. Just as in the case of Ising
domain growth, theXY growth exponentfXY quickly in-
creases with temperature in the low-temperature region and
then remains almost temperature independent with
fXY.0.38 for a broad range of temperatures. One might ask
why theXY growth exponent remains considerably smaller
than that of the pureXY model in two dimensions. This
appears to be due to the pinning of point vortices near Ising
domain walls. That is, the motion of vortices is strongly
restricted by the presence of nearby Ising domain walls and
hence the relaxation dynamics of point vortices is no longer
the same as in the case of the pureXY model. In order to
explain quantitatively the specific value offXY.0.38, we
would have to understand the detailed mechanism of pinning
interaction and the decay processes of the defects, in which
we have not succeeded yet.

Let us turn to the low-temperature behavior of the growth
exponents. Quite often, it is a rather difficult and subtle task

FIG. 3. Temperature dependence of growth exponentsfXY and
f I . Error bars are a few times the size of the symbols.

FIG. 4. Scaling collapse of the equal-time correlation functions
for theXY spin atT51.0 with LXY(t);tfXY, wherefXY.0.4.
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to determine the domain growth exponent at low temperature
for an ordering system especially when the system exhibits a
freezing behavior at zero temperature. As shown by Lai, Ma-
zenko, and Valls~LMV ! @23#, for a system where the zero-
temperature freezing is caused by local energy barriers that
are independent of the size of ordered domains~a class II
system according to LMV’s classification!, the typical be-
havior of the average domain sizeL(t) goes as
L(t);L01A„t/t(T)…f, wheret(T).t0exp(E0 /T), with E0
representing a barrier activation energy andA andt0 being
weakly temperature-dependent quantities.L0 is a length
scale related to the typical frozen domains atT50. There-
fore, at low temperature (T!E0), the characteristic time
scalet(T) becomes very large and it is very hard and almost
impossible to reach numerically the time regime for the cor-
rect determination of the late-time growth exponentf. In
practice, almost inevitably, the measured exponents are un-
derestimated compared to the true asymptotic values. In the
present coupledXY-Ising model, a further complication
arises from the continuous O~2! symmetry in addition to the
Ising symmetry and from the fact that theXY order param-
eter itself develops into a quasiordered state via a quasior-
dering process. It is not clear at all, at this point, how to
implement the renormalization-group analysis for our sys-
tem, analogous to that of LMV. Due to these theoretical
uncertainties, we have not attempted any detailed numerical
or theoretical analysis of the type of LMV to our system.
Here the most important question is whether the low-
temperature ordering behavior of the system belongs to class
II in LMV’s classification or to a newer class, not discussed
by LMV, which probably includes the FFXYM that shows
quite convincingly a genuine temperature-dependent growth
exponent at low temperatures. At this point, we should leave
the answer for this question to further analysis.

There exists another time-dependent length scale that can
be drawn from the time dependence of the distribution of the
XY point vortices, that is, the average separation between
point vortices. Since the quasiordering of theXY order pa-
rameter corresponds to the decay processes of the point vor-

tices, this length scale must be closely related to the size of
the ordered region for theXY degrees of freedom. Rigor-
ously, we must deal with the residual vortex number
DNv(t)5Nv(t)2Nv(`), whereNv(`) is the equilibrium
vortex number at a given temperature. Figure 5 shows the
excess vortex number for various temperatures where we can
see a power-law behaviorDNv(t);t2nv with the exponents
nv varying weakly with the temperature as shown in Fig. 6.
Interestingly enough, throughout the temperature range, the
growth rate of the length scaleLv(t) defined as
Lv(t);1/ADNv(t) does not coincide with that ofLXY(t).
For example, atT50.4, we findLv(t);t0.28, in contrast to
LXY(t);t0.36. We may interpret this discrepancy, at least
qualitatively, in the following way. The fact that

FIG. 5. Residual vortex numberDNv(t) of theXY spin versus
time in a log-log plot at temperaturesT50.1, 0.4, and 1.0.

FIG. 6. Temperature dependence of various exponentsnv , nc ,
andn l . Error bars are a few times the size of the symbols.

FIG. 7. Ising scaling functionsf I(x) for various temperatures.
The data plotted for each temperature are the rescaled Ising corre-
lation function att52560.
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Lv(t);1/ADNv(t) grows more slowly thanLXY(t) implies
that the point vortices are not completely randomly distrib-
uted but that there exists some sort of clustering of point
vortices so that the average separation between these clusters
of point vortices actually corresponds to the length scale
LXY . One obvious possibility for this clustering behavior
would be the effect of pinning of vortices near the Ising
domain walls that would hinder the motion of vortices in the
direction away from the domain walls. Since we also have to
take into account the fact thatXY ordering is a quasiordering
process, we expect that the corresponding equilibrium expo-
nenth also has to be considered in the above arguments. In
spite of this theoretical caveat, the above argument appears
to corroborate our numerical result that the Ising andXY

domains grow with different exponents and indicate that
there exist multiple length scales in the relaxation and order-
ing kinetics of our model system.

The Ising scaling functionf I(x), where x[r /LI(t) is
shown in Fig. 7 for various temperatures. They all collapse
onto a single curve even though the numerical values of the
Ising growth exponents, especially at low temperatures, are
temperature dependent. This, in turn, coincides with the scal-
ing function for the pure Ising model in two dimensions.

In order to examine a possible morphological change, as
observed in the FFXYM, we plot the snapshots of typical
configurations for a quench to the temperaturesT50.1, 0.6,
and 1.0, respectively, in Fig. 8. We see that while at low
temperature (T50.1), the domain walls become faceted at

FIG. 8. Snapshots of configurations for Ising domains andXY spin vortices at~a! T50.1, ~b! T50.6, and~c! T51.0. In each set, figures
represent the snapshots taken att540, 160, 640, and 2560, respectively, clockwise from the top left. Ising domains are denoted by different
shades representing the different sign of the Ising spins. Up and down triangles represent vortices and antivortices respectively.
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large length scales, the domain walls become rougher at high
temperature (T51.0). Note that the ordering is slower for
lower temperature, consistent with the temperature depen-
dence off I obtained from scaling collapse of correlation
functions.

For a more quantitative understanding of these morpho-
logical features, we calculated the time dependence of the
total number of corners (Nc) and the total length (Nl) of
Ising domain walls. Simulations show that these quantities
decay in time toward their equilibrium values with a power
law, i.e.,Nc(t)2Nc(`);t2nc andNl(t)2Nl(`);t2n l. The
temperature dependence of these exponents are shown in
Fig. 6 together withnv . If we havenc.n l , then the total
number of corners decays faster than the total length of line
defects~domain walls!, implying that the average separation
between neighboring corners increases indefinitely in time,
that is, we get flat domain walls. On the other hand, if we
havenc.n l , then the average separation between neighbor-
ing corners will be kept constant, resulting in rough domain
walls. Even though the snapshots exihibit the characteristic
morphological changes asT is increased from low to high
temperature, we do not feel that we can make a definitive
statement concerning the existence of the finite-temperature
roughening transition from the numerical value of these ex-
ponents shown in Fig. 6. This question also seems to be
related to the question as to the nature of the low-
temperature growth kinetics, namely, whether the low-
temperature barrier activation energy is independent of the
average domain size or dependent on it. In this connection,
we have to reconsider the fact that point vortices are mostly
pinned near Ising domain walls either near the corners or
along the sides of the domain walls. One important point to
note, however, is that not all the geometric corners of the
domain walls have pinned vortices on them. This is in con-
trast to the case of the FFXYM, where every corner of chiral
domain walls corresponds to a vortex with fractional charge
of 1/4. In this case of the FFXYM, we can argue similarly, as
done by Uimin and Pimpinelli@24#, that it is possible to have
a finite-temperature roughening transition of Ising domain
walls due to KT-type unbinding of fractional-vortex pairs
because the fractional vortices can be identified as the geo-
metric corners of Ising domain walls. In contrast, however,
we cannot use this kind of argument straightforwardly in the
present case of coupledXY-Ising model because some cor-
ners have vortex charges while others do not. Therefore, fur-
ther extensive study is required to clarify this point.

We also have calculated the autocorrelation functions for
both XY and Ising order parameters. Rather unexpectedly,
we found that the power-law slope continues to increase in
magnitude when plottingAXY(t) versus time in a log-log
scale as shown in Fig. 9 atT50.6, for example. This indi-
cates that the spin autocorrelation function does not follow a
power-law decay in time. Instead, as shown in the inset to
Fig. 9, we found that it can be well fit by a stretched expo-
nential behavior of the formAXY(t);exp(2ctb), with
b.0.146. Similar behavior for theXY spin autocorrelation
function was found for all the other temperatures with an
almost temperature-independent exponentb. The spin wave
dominance within an Ising domain due to the pinning of
vortices near the domain walls might be responsible for this
stretched exponential relaxation. The one-dimensionalXY

model is another case where the spin autocorrelation func-
tion shows a stretched exponential behavior. For this model,
it was analytically shown that a spin wave fluctuation gives
rise to a stretched exponential decay of the spin autocorrela-
tion with different value ofb50.5.

The autocorrelation functionAI(t) for the Ising order pa-
rameter showed a power-law behavior with
AI(t;T);LI(t;T)

2l;t2f Il in time, as shown in Fig. 10 at
T50.6 for an example. The exponentl varies from 1.1 to
1.25, but the statistics of the data is not good enough to
determine whether the exponentl is the same as that in the
pure Ising model in two dimensions, which was analytically
found to be 5/4 by Fisher and Huse@25#.

FIG. 9. Autocorrelation function of theXY spin order parameter
versus time in a log-log plot atT50.6. The inset is a stretched
exponential plot for the same data.

FIG. 10. Autocorrelation function of the Ising order parameter
versus time in a log-log plot atT50.6. Sincef I(T50.6).0.48,
l.0.6/0.48.1.25.
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IV. SUMMARY

In this work, we presented simulation results on the or-
dering dynamics of the coupledXY-Ising model in two di-
mensions. The ordering involves the annihilation processes
of the two kinds of topological defects—Ising domain walls
andXY spin vortices—and the interaction between these two
defects. The pinning of vortices near Ising walls consider-
ably reduces the growth rate ofXY ordering and yields a
stretched exponential relaxation in the autocorrelation func-
tion for theXY order parameter. Due to the presence of the
multiple length scales in the ordering process, it would be

interesting to probe the mutual correlations between the line
and point defect densities.
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