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Kinetics of phase ordering in the two-dimensional coupledXY-Ising model
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The ordering kinetics of a coupledY-Ising model on a two-dimensional square lattice quenched from a
disordered state to a low-temperature ordered phase is investigated via Monte Carlo dynamical simulations.
The decay process of the two types of topological defgutént vortices and line defects of Ising domain
walls) and the interaction between them controls the long-time dynamics of the ordering. In particular, the
decoupling ofXY degrees of freedom across Ising domain walls leads to the pinning of vortices near the walls,
which considerably slows down the growth ®fY order: it shows a power-law growth in time with the
exponentpyy=0.38. This vortex pinning also appears to give rise to a stretched exponential relaxation in the
XY autocorrelation function. The dynamic scaling for bath and Ising order parameters in the presence of
multiple length scales is discuss¢&1063-651X96)09609-2

PACS numbe(s): 64.60.Cn, 64.60.Ht, 64.60.My, 82.20.Mj

I. INTRODUCTION model system having the same O§J, ground-state de-
generacies as the FFXYM. Here thé€2D continuous sym-

Understanding the ordering kinetics of statistical systemsnetry corresponds to the invariance of Hamiltonian under
subjected to a rapid thermal quench from a disordered phasgflobal rotation of phases oY spins, whereas thg, dis-
to an ordered phase has been one of the central issues dfete symmetry corresponds to the doubly degenerate Ising
non-equilibrium statistical mechanits,2]. A recent nonper-  order parameter. This model, with an appropriate choice of
turbative approach to this problef—5] seems to offer sig-  the parameters, has been claimed to belong to the same uni-
nificant theoretical progress in this area. Being extended t9ersality class as the FFXYM with respect to the equilibrium
systems possessing continuous degeneracy of ground statggiical properties. In the present work, we carry out Monte
the theory{6—8] has stimulated intensive theoretical and ex-caro simulations on the ordering kinetics of a coupled
perimental investigations on the kinetics of systems having @(Y-Ising model with the aim of highlighting the common

;ﬁgego?‘f;tgg: topological defects such as vortices, StiNgSyng contrasting features of these two closely related models
b X : 8ossessing the same ground-state degeneracies.
Most research so far, however, have been restricted t : . o
systems with ground states possessingjragle type of de- We find that the qute Car_lo oro!erlng kme_uc_s of the
é:oupledXY—Ismg model in two dimensions exhibits interest-

generacy, either discrete or continuous. Recently, Lee, Leg, I . :
and Kim [9] have investigated numerically the Kinetics of ing features due to the mutual pinning between point vortices

ordering in a system with both discrete and continuous sym&nd Ising domain walls. In the limit of a zero-temperature
metries. This work indicated that the ordering kinetics ofduénch, the system freezes into metastable configurations,
systems havingwo types of ground-state degeneracies si-Just as in the case of pure hard spiY model[14,15 or the
multaneously can be, though complicated, very rich due t&-FXYM in two-dimensional square lattice9]. For
the simultaneous presence of two different stable topologicaiuenches to finite temperatures, the equal-time correlation
defects and the interaction between them. Specifically, th&nctions of an Ising order parameter satisfy a dynamic scal-
model they considered was the two-dimensional fully frus-ing, while those of arXY order parameter follow a critical
trated XY model (FEXYM) [10] on a square lattice. The dynamic scaling, as can be expected from the fact that the
ground-state manifold of the model possesses discrete IsingY order parameter, at equilibrium, exhibits a so-called
like chiral symmetry in addition to usual global continuous Kosterlitz-ThoulesgKT) phase[16] with a power-law cor-
rotation symmetry in spin space. Due to this unusual sym+elation for T<Tyy, whereTyy is the KT transition tem-
metry structure of the ground-state manifold, excitations ofoerature. The appropriate length scalesrresponding to the
the model can have two types of stable topological defectsaverage size of Ising domailn and theXY-ordered region
line defects of chiral domain walls and point defects, whichLxy) exhibits power-law growth in time, i.eL,~t* and
are vortices having a fractional value of the original vortexLyy~t?xY with temperature-dependent growth exponents
charges and reside always at the corners of the line defects and ¢y : they show a quick increase at low temperature
[11,12. Simulation showed that the interaction between twoand saturate to the values nesr=0.5 and¢yy=0.38, re-
kinds of defects leads to an unusual faceted domain morphospectively, for most of the temperature range below the tran-
ogy at low temperatures, which becomes rough at some finitsition temperatur&, ~ Tyy=1.38. The simulation result that
temperature. the growth exponendyy for the XY quasiordering is signifi-

A coupledXY-Ising model[13], which explicitly has both  cantly smaller than that of the pud¢Y model[17-19,15
XY and Ising degrees of freedom on each site, is anothetan be attributed to the effect of pinning the vortices near
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Ising domain walls, which hinders the motion of point vor-
tices and also the annihilation of vortex-antivortex pairs. H= —JZ [(1+ as;sj)cod 6, — 6;) + ysiS|], (1)
In terms of the domain growth morphology, we find that, (i
at low temperatures, Ising domain walls show mostly faceteqvheresi: +1 and#; are the Ising spin and the phase angle
shapegstraight domain walls while at higher temperature f the XY spin at sitei respectively, and the brackéij )

they become rough. This fact is in contrast to the case of,i.ates that the sum is taken over nearest-neighbor pairs. In
pure Ising dynamics where the infinitesimal thermal fluctua-

tion leads to rough domain walls. In the case of the FFXYM,gﬁﬁgﬁrgj&a\t/?srsm%%?l (al)s(almo;/(\a/ n Ct-‘?aueale\t/ga? [r|1c3r]1 V?;;g of
guite convincing numerical evidend®] could be given to : Pie, : P

the finite-temperature roughening of the chiral domain walls/" @=1 (isotropic caspa single continuous transition to a

which was attributed to the interplay between the long-rangdlisordered phaséfor y=y*, where y*~0.3) where both
interaction of corner point defectsvith fractional charges XY and Ising orders are destroyed, a separateand Ising
and the thermal fluctuation. In the case of a coupledransition (for y>y*), and a first-order transitior{for
XY-Ising model, the status of numerical evidence as to the¥<7y*).
finite-temperature roughening is not conclusive enough. In the present work, however, we restrict ourselves to the
There are no inherent charges associated with corners sfmplest case of the general Hamiltoni@n, namely,a=1
Ising domain walls in the coupled Y-Ising model. But the andy=0:
decoupling ofXY spins across Ising domain wallsee be-
low) makes the vortices aKY spins pinned near Ising do- _
main walls or corners, which may play roles similar to the H= _J% [(1+sisj)cog 60— 6))]. @
corner charges in the FFXYM.

We find a feature for the autocorrelation function of the Granatoet al. claim that this simpler model hasingle XY
XY spin order parameter that exhibits an unusual stretchegnd Ising transition at the temperatifg=1.38[22] (we set
exponential behavior ohxy(t) ~exp(-ct’), where the value =1 and the Boltzmann constaki=1). In equilibrium,
of B ranges from 0.13 to 0.17. This peculiar behavior isthis model can have two topological excitations at finite tem-
reminiscent of the behavior of the spin autocorrelation in theyeratures besides the smooth spin wave excitation of the
one-dimensionakY model, but with a different value of the xy gpins. One is vortices of théY spins that interact loga-
exponent (B=1/2 in the one-dimensionalY mode) [20].  (ithmically in the large distances among themselves. The
A similar stretched exponential behavior for (K& autocor-  yher s the domain wall excitation that comes from the two
relation functlonlls found in a time dependent GIanurg'degenerate Ising spin domains. The form of the Hamiltonian
Landau _model with botiX'Y and_ Ising-type ground-state de- (2) indicates that theXY spins located across Ising domain
generacies where the valyé is given approximately by walls (at sitesi andj) become decoupled sincetk;s;=0.

B£=0.16[21]. - ] ; e )
This paper is organized as follows. Section Il describes We are interested in understanding the kinetics of the or

the model, the simulation method, and the quantities of indering Process in the system governed by the Hamiltonian

terest. The simulation results along with a discussion aré?) followed by a thermal quench from a disordered phase to

presented in Sec. Ill. Section IV summarizes the results. &0 ordered phase. The ordering kinetics is probed via Monte
Carlo simulations where the standard Metropolis update is

Il. MODEL AND SIMULATION METHOD carried out from disordered random initial configurations.

A general form of the Hamiltonian for a coupled One of the following update procedures are randomly se-

XY-Ising model[13] can be written as
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FIG. 1. Relaxation of the excess energy per Aite for a zero- FIG. 2. Scaling collapse of the equal-time correlation functions
temperature quench. for the Ising spin aff =1.0 with L,(t)~t%, where¢,=0.505.
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FIG. 4. Scaling collapse of the equal-time correlation functions
FIG. 3. Temperature dependence of growth exponggtsand  for the XY spin atT=1.0 with Lyy(t)~t*x, where ¢xy=0.4.
¢, . Error bars are a few times the size of the symbols.
correlation function€, (r,t) with a length scal&,(t), which
lected: (i) rotation of the XY phase angle by a random is defined asC,(r=L,(t),t)=1/2 for a given timet. This
amount, leaving the Ising spin unflipped, afiid rotation of  gives a good data collapse for a given quenching tempera-
the XY phase angle by a random amoamid Ising spin flip.  ture, as demonstrated in Fig. 2. This means that the equal-
~ Simulations were carried out on a square lattice of lineatime Ising correlation function satisfies a simple dynamic
s!zeL=200. The_rggults prgsent(_ad are averages over 40‘@:aling of the fornC,(F,t)=f|(r/L|(t)). As one can expect,
different random initial configurations. In order to carry out a o Ising length scalé(t) shows a power-law growth in
quantitative analysis on the kinetics, we measure the equafine of the formL,(t)~t*, but the growth exponend,
time correlation functions and autocorrelation functions forg,qws a temperature depehdence, as seen in Fig. 3: it rapidly

both XY and Ising order parameters. In addition to thes€yqyys at low temperatures and saturates to the usual Ising
guantities, we also measured the total length of Ising doma'@xponentq&, —1/2 at high temperatures.

walls and the total number of the corners of the Ising domain  ‘g;ca thexy spin ordering is quasi-long-ranged, one ex-

walls to examine a possible morphological change. pects a critical dynamic scaling for theY spin correlation

functions of the formCyy(r,t)=r " 7fxy(r/Lyy(t)), where
7n(T) is the critical exponent for the equilibrium correlation
One of the most important characteristics in the orderingat temperaturd’. Since an analytic expression is not avail-
dynamics of a coupleX Y-Ising model is the mutual pinning able for », assuming a power-law growth of the length scale
of vortices and Ising domain walls, as can be seen from thé xy(t) ~t%xY, we adjust two parameterg and ¢yy to get
snapshots of the morphology of the systéfig. 8). Now the  the best scaling collapse. Figure 4 shows such a scaling col-
XY ordering proceeds via coarsening and decay of the vordapse forCy(r,t) atT=1.0 and the temperature dependence
tices and Ising ordering through the decay of the domairof the exponentz(T) obtained from scaling collapse is
walls. Since the morphology shows mutual pinning betweershown in the inset of Fig. 3. Just as in the case of Ising
the two kinds of topological defects, we expect that a nondomain growth, theXY growth exponentpyy quickly in-
trivial growth law would result for the ordering for each creases with temperature in the low-temperature region and
order parameter from the pinning effect, which indeed isthen remains almost temperature independent with
seen to be the case from the simulation results. dxy=0.38 for a broad range of temperatures. One might ask
For the case of zero-temperature quench, we find that thehy the XY growth exponent remains considerably smaller
system is driven into a metastable state and the ordering do#san that of the pureXY model in two dimensions. This
not proceed any further. This can be best seen in the relayappears to be due to the pinning of point vortices near Ising
ation of the excess energy per sitAE=E(t)—E,  domain walls. That is, the motion of vortices is strongly
Eo,=—4 being the ground-state energy per site. As Fig. Irestricted by the presence of nearby Ising domain walls and
shows, it saturates into some nonzero value, indicating thatence the relaxation dynamics of point vortices is no longer
the system falls into a metastable configuration. Similathe same as in the case of the pi¥ model. In order to
freezing behavior has also been observed in the FFXYM omxplain quantitatively the specific value @¢fyy=0.38, we
a square latticg9]. It is observed that this freezing is re- would have to understand the detailed mechanism of pinning
moved by a thermal fluctuation. interaction and the decay processes of the defects, in which
For a finite-temperature quench, in order to check the dywe have not succeeded yet.
namic scaling and find the growth rate of the ordering pro- Let us turn to the low-temperature behavior of the growth
cesses, we first tried to collapse the Ising order paramet@xponents. Quite often, it is a rather difficult and subtle task

[ll. SIMULATION RESULTS AND DISCUSSION
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FIG. 5. Residual vortex numbeXN, (t) of the XY spin versus

Lo FIG. 6. Temperature dependence of various expo ST
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andv, . Error bars are a few times the size of the symbols.

to determine the domain growth exponent at low temperature
for an ordering system especially when the system exhibits Hces, this length scale must be closely related to the size of
freezing behavior at zero temperature. As shown by Lai, Mathe ordered region for thXY degrees of freedom. Rigor-
zenko, and Vall§LMV) [23], for a system where the zero- ously, we must deal with the residual vortex number
temperature freezing is caused by local energy barriers thaN,(t)=N,(t) —=N,(=), where N (=) is the equilibrium

are independent of the size of ordered domdmslass Il Vvortex number at a given temperature. Figure 5 shows the
system according to LMV’s classificatipnthe typical be- €xcess vortex number for various temperatures where we can
havior of the average domain sizé(t) goes as See a power-law behavidrN,(t)~t™" with the exponents
L(t)~Lo+At/7(T))?, where 7(T)=r0expEo/T), with Eq v, varying weakly with the temperature as shown in Fig. 6.
representing a barrier activation energy ahand 7, being  Interestingly enough, throughout the temperature range, the
weakly temperature-dependent quantitiés, is a length growth rate of the length scalel (t) defined as
scale related to the typical frozen domainsTat0. There- L, (t)~1/VAN,(t) does not coincide with that of xy(t).

fore, at low temperature T(<E,), the characteristic time For example, af'=0.4, we findL,(t)~t%?3 in contrast to
scaler(T) becomes very large and it is very hard and almostxv(t)~t>*%. We may interpret this discrepancy, at least
impossible to reach numerically the time regime for the cor-qualitatively, in the following way. The fact that
rect determination of the late-time growth exponehtIn

practice, almost inevitably, the measured exponents are un- 18
derestimated compared to the true asymptotic values. In the 4
present coupledXY-Ising model, a further complication %@

arises from the continuous(® symmetry in addition to the
Ising symmetry and from the fact that tixY order param-
eter itself develops into a quasiordered state via a quasior-
dering process. It is not clear at all, at this point, how to
implement the renormalization-group analysis for our sys- 06
tem, analogous to that of LMV. Due to these theoretical fi(x)
uncertainties, we have not attempted any detailed humerical !
or theoretical analysis of the type of LMV to our system. 04 |
Here the most important question is whether the low-
temperature ordering behavior of the system belongs to class
Il 'in LMV’s classification or to a newer class, not discussed
by LMV, which probably includes the FFXYM that shows
quite convincingly a genuine temperature-dependent growth
exponent at low temperatures. At this point, we should leave
the answer for this question to further analysis. 0
There exists another time-dependent length scale that can
be drawn from the time dependence of the distribution of the
XY point vortices, that is, the average separation between FIG. 7. Ising scaling function$,(x) for various temperatures.
point vortices. Since the quasiordering of tk¥ order pa- The data plotted for each temperature are the rescaled Ising corre-
rameter corresponds to the decay processes of the point vdation function att=2560.
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L,(t)~1/JAN,(t) grows more slowly thahy(t) implies domains grow with different exponents and indicate that
that the point vortices are not completely randomly distrib-there exist multiple length scales in the relaxation and order-
uted but that there exists some sort of clustering of poining kinetics of our model system.

vortices so that the average separation between these clustersThe Ising scaling functionf,(x), where x=r/L,(t) is

of point vortices actually corresponds to the length scaleshown in Fig. 7 for various temperatures. They all collapse
Lxy. One obvious possibility for this clustering behavior onto a single curve even though the numerical values of the
would be the effect of pinning of vortices near the Isinglsing growth exponents, especially at low temperatures, are
domain walls that would hinder the motion of vortices in thetemperature dependent. This, in turn, coincides with the scal-
direction away from the domain walls. Since we also have tang function for the pure Ising model in two dimensions.
take into account the fact th&tY ordering is a quasiordering In order to examine a possible morphological change, as
process, we expect that the corresponding equilibrium expmbserved in the FFXYM, we plot the snapshots of typical
nent» also has to be considered in the above arguments. loonfigurations for a quench to the temperatufes0.1, 0.6,
spite of this theoretical caveat, the above argument appeassd 1.0, respectively, in Fig. 8. We see that while at low
to corroborate our numerical result that the Ising a0d  temperature T=0.1), the domain walls become faceted at
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FIG. 8. Snapshots of configurations for Ising domains ¥iYdspin vortices ata) T=0.1, (b) T=0.6, and(c) T=1.0. In each set, figures
represent the snapshots taken-a#0, 160, 640, and 2560, respectively, clockwise from the top left. Ising domains are denoted by different
shades representing the different sign of the Ising spins. Up and down triangles represent vortices and antivortices respectively.
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large length scales, the domain walls become rougher at high 1 e
temperature T=1.0). Note that the ordering is slower for oy 'l' A' T
lower temperature, consistent with the temperature depen- T =06 + - );ggg +_

dence of¢, obtained from scaling collapse of correlation
functions.

For a more quantitative understanding of these morpho-
logical features, we calculated the time dependence of the
total number of cornersN.) and the total lengthN,) of r it ]
Ising domain walls. Simulations show that these quantities Axy(t)or | Ty N iy
decay in time toward their equilibrium values with a power ++++ ! - . ]
law, i.e.,Ng(t) — Ng() ~t~ " andN,(t) — N;() ~t~". The Ty, 10 100 1000
temperature dependence of these exponents are shown in
Fig. 6 together withy,. If we havev.>v,, then the total
number of corners decays faster than the total length of line
defects(domain wallg, implying that the average separation
between neighboring corners increases indefinitely in time,
that is, we get flat domain walls. On the other hand, if we B . l
havev.= v, then the average separation between neighbor- oo 10 100 1000
ing corners will be kept constant, resulting in rough domain t
walls. Even though the snapshots exihibit the characteristic
morphological changes &E is increased from low to high FIG. 9. Autocorrelation function of th¥Y spin order parameter
temperature, we do not feel that we can make a definitive/€rsus time in a log-log plot ar=0.6. The inset is a stretched
statement concerning the existence of the finite-temperatuf@Ponential plot for the same data.
roughening transition from the numerical value of these ex-
ponents shown in Fig. 6. This question also seems to bgodel is another case where the spin autocorrelation func-
related to the question as to the nature of the lowdion shows a stretched exponential behavior. For this model,
temperature growth kinetics, namely, whether the low-it was analytically shown that a spin wave fluctuation gives
temperature barrier activation energy is independent of théise to a stretched exponential decay of the spin autocorrela-
average domain size or dependent on it. In this connectiorijon with different value of3=0.5.
we have to reconsider the fact that point vortices are mostly The autocorrelation functioA, (t) for the Ising order pa-
pinned near Ising domain walls either near the corners ofameter ~ showed a  power-law  behavior  with
along the sides of the domain walls. One important point toA(t; T)~L,(t;T) *~t~%* in time, as shown in Fig. 10 at
note, however, is that not all the geometric corners of thel =0.6 for an example. The exponextvaries from 1.1 to
domain walls have pinned vortices on them. This is in con-1.25, but the statistics of the data is not good enough to
trast to the case of the FFXYM, where every corner of chiraldetermine whether the exponents the same as that in the
domain walls corresponds to a vortex with fractional chargepure Ising model in two dimensions, which was analytically
of 1/4. In this case of the FFXYM, we can argue similarly, asfound to be 5/4 by Fisher and Hug25].
done by Uimin and Pimpinel[i24], that it is possible to have
a finite-temperature roughening transition of Ising domain
walls due to KT-type unbinding of fractional-vortex pairs
because the fractional vortices can be identified as the geo-
metric corners of Ising domain walls. In contrast, however,
we cannot use this kind of argument straightforwardly in the
present case of coupledY-Ising model because some cor-
ners have vortex charges while others do not. Therefore, fur-
ther extensive study is required to clarify this point.

We also have calculated the autocorrelation functions for
both XY and Ising order parameters. Rather unexpectedly,
we found that the power-law slope continues to increase in
magnitude when plottincAyv(t) versus time in a log-log
scale as shown in Fig. 9 a=0.6, for example. This indi-
cates that the spin autocorrelation function does not follow a
power-law decay in time. Instead, as shown in the inset to
Fig. 9, we found that it can be well fit by a stretched expo-
nential behavior of the formAyy(t)~exp(—ct®), with
B8=0.146. Similar behavior for thXY spin autocorrelation 0.001 ” oo o
function was found for all the other temperatures with an t
almost temperature-independent expon@nfhe spin wave
dominance within an Ising domain due to the pinning of FIG. 10. Autocorrelation function of the Ising order parameter
vortices near the domain walls might be responsible for thisersus time in a log-log plot af=0.6. Since¢,(T=0.6)=0.48,
stretched exponential relaxation. The one-dimensiofdl  \=0.6/0.48=1.25.
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IV. SUMMARY interesting to probe the mutual correlations between the line

In this work, we presented simulation results on the or—amd point defect densities.

dering dynamics of the coupledY-Ising model in two di-
mensions. The ordering involves the annihilation processes
of the two kinds of topological defects—Ising domain walls  We gratefully acknowledge the support in part from the
andXY spin vortices—and the interaction between these twaorea Science and Engineering Foundatidd.-R.L),
defects. The pinning of vortices near Ising walls considerthrough Grant No. KOSEF-961-0202-00€B1K.), a Science
ably reduces the growth rate ofY ordering and yields a Research Center Program at the Research Center for Dielec-
stretched exponential relaxation in the autocorrelation functric and Advanced Matter Physi¢k C.), and Basic Science
tion for the XY order parameter. Due to the presence of theResearch Institute under Grant No. BSRI-95-24B2K. and
multiple length scales in the ordering process, it would bd. C.).
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